
UNSUPERVISED SEGMENTATION OF CELL NUCLEI USING GEOMETRIC MODELS 
Shaun Fitch, Trevor Jackson, Peter Andras, Craig Robson 

 
Newcastle University, UK 

 
ABSTRACT 

 
Fluorescent microscopy of biological samples allows non-
invasive screening of specific molecular events in-situ. This 
approach is useful for investigating intricate signalling 
pathways and in the drug discovery process. The large 
volumes of data involved in image analysis are a limiting 
factor. As manual image interpretation relies on expensive 
manpower automated analysis is a far more appropriate 
solution. 

In this paper we discuss our approach to achieve reliable 
automated segmentation of individual cell nuclei from wide 
field images taken of prostate cancer cells. We present a 
novel analysis routine to accurately identify cell nuclei based 
upon intensity clustering and morphological validation using 
a data derived geometric model. This approach is shown to 
consistently outperform the standard analysis technique 
using real data. 

Index Terms— Model-based segmentation, 
Fluorescence, Microscopy, Screening 
 

1. INTRODUCTION 
 
The diversity of observable biological phenomena arises 
from dynamic molecular interactions. Most interactions are 
transient events, the only evidence being short lived co-
localisation of molecules. Investigating cell dynamics 
demands that we have tools and methods that allow us to 
observe location specific interactions on a large scale [1]. 
These tools can then be applied to the drug discovery 
process to improve the rate of target identification and 
validation [2]. 

Microscopy allows biological systems to be observed 
non-invasively [3]. Unlike destructive techniques that 
require homogenisation of cells, microscopy can be used to 
collect quantitative and location specific observations in 
individual cells over time using live samples.  

To be able to investigate phenotype in microscopy 
images we must first identify the contiguous regions in the 
data that represent individual cells. The source images 
captured from the microscope record a short range of 
wavelengths that corresponds the known emission spectra of 
the fluorescent marker however it is non trivial to identify 
regions that correspond to real world objects. 

Image analysis is classically a manual user driven 
operation where a operator views and processes each image. 
The volume of data produced in image assays is beyond 

manual processing capabilities. There is significant 
variability in biological systems therefore even for small 
scale phenotypic screens it is necessary to capture many 
fields of view in order to sample sufficient cells to be able to 
make valid inferences. Also, as microscopy technology 
improves we are recording an increasing number of 
dimensions resulting in highly complex datasets that can not 
be suitability presented to or processed by a manual user[4].  

There are many image processing functions available to 
assist in image analysis but such tools remain dependent 
upon the user for ultimate object interpretation. Performing 
image based assays requires that we can automate the 
analysis of the raw image data. In a fully automated system, 
a user will never see the raw image. Such an unsupervised 
system must not only process image data autonomously but 
must also be able to interpret the quality and validity of the 
output. 

2. OBJECT INTERPRETATION 
 

Object analysis of an image extracts regions that share 
common characteristics, however the actuality that these 
regions describe specific biological compartments is a 
pertinent question. It is the interpretation of identified 
regions that typically relies on skilled human operators and 
this is what we are automating in our solution.  

Cells and organelles are complex biological 
compartments. As there is no fluorescent technology that can 
perfectly tag such compartments so we rely upon fluorescent 
molecules that are known to be predominantly resident 
within them. The containment of molecules is not absolute 
therefore fluorescent events will be observed outside of the 
target containers. Image data is further affected by sources 
of error such as uneven illumination and shot noise.   

Accurate interpretation of image data requires that we 
have a model against which identified regions can be tested. 
In our work we have developed a morphological model for 
cell nuclei.  

Standard analysis involves the extraction of a single non 
overlapping set of objects which limits the opportunity of 
correctly identifying an object. A model based interpretation 
permits the analysis of a large set of overlapping potential 
regions derived from multiple independent analysis of the 
original image.   

In our research we use the prostate cancer cell line 
PC3M. In culture these cells show highly heterogeneous 
cellular morphology which is typical of cultured cancer cells 
as significant control and regulatory networks are disrupted. 
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The morphological variability precludes the generation of a 
useful general geometric model for the cell body.  

Rather than directly looking for cells an alternate 
approach is to search for cell nuclei which can then be 
associated with a local cell body region. Nuclei are far more 
morphologically constrained than cell bodies. In the general 
case the cell nucleus is a compact, convex shape. The 
nucleus does significantly deviate from its general 
morphology during late telophase but this is a brief event in 
the cell cycle.  

To qualify an identified region as a nuclear object we 
need to be able to measure the compactness of the region. 
For this we use the shape described by the convex hull of the 
perimeter. The convex hull defines a shape that encloses a 
direct line between every point in the original region. A 
compact shape with no indentations will closely match its 
convex hull whereas an irregular shape will present 
significant deviations.  

Accurately measuring the similarity of a region to its 
convex hull requires a method that penalises larger 
concavities more heavily than smaller concavities. The 
difference in volume of the region and its convex hull is a 
useful indicator of similarity but has no regard for specific 
geometric similarity. 

To measure specific concavities we implemented a 
method that identifies the translation required to map each 
point of the region perimeter to the closest point on the 
convex hull. Large concavities will require greater 
translations than small concavities therefore the distribution 
of translations for the entire perimeter provides evidence of 
the magnitude of any concavities.  

The translation is identified by finding the shortest path 
along the perimeter to a point on the convex hull. This 
approach ensures that the points of large concavities are 
mapped to the correct face of the convex hull as they may be 
closer in space to points on the apposing face. 

 
3. REGION IDENTIFICATION 

 
Regions of interest are extracted from image data based 
upon localised similarity, typically similarity of recorded 
intensity level. Significant variability in fluorescent response 
and a typically low signal to noise ratio makes it difficult to 
globally define significant local intensity similarity. 

Pixel intensity thresholds are the standard method for 
defining foreground and background regions. Thresholding 
techniques can produce excellent segmentation but for many 
cases the result can be very poor. Low quality thresholding 
introduces significant error by misclassifying background 
and foreground.  

Our approach to this problem is to use intensity clustering 
to group regions of similar intensity. As stated earlier the 
variability in object fluorescence generally negates the use 
of global parameters to identify all of the objects so we have 
developed a multi-pass combinatorial approach. The source 

image is independently processed using different intensity 
grouping, pixels assigned the same scaled value with a  
common edge are connected to create contiguous regions. 
The identified regions are pooled to serve as the input set for 
the shape analysis operation.  

Intensity groupings are defined by rescaling the original 
pixel intensities. A raw 16 bit image, as produced by most 
research grade CCD cameras, has 4095 possible grey levels. 
We successively shorten the scale the intensity values to a 
shorter range which cause similar regions to be assigned the 
same value. The scales required to find useful ‘similar’ 
regions are much shorter than the source range, generally 
between 3 and 20.    

When objects are identified they regularly contain 
internal gaps. These gaps can be evident in correctly 
segmented cells from uneven fluorescence or nucleoli, small 
sub nuclear organelles. The shape analysis is only concerned 
with the external perimeter and so ignores all internal gaps. 
 

4. METHODS 
 
To demonstrate and validate our novel segmentation method 
we conducted a comparison between manual identification, 
standard global thresholding and our shape analysis 
technique using automatically captured wide-field images. 
 
4.1 Sample Cells  
We have engineered a PC3M cell line to express the histone 
2b protein with an RFP (red fluorescent protein) tag. The 
histone proteins are DNA binding molecules involved in 
chromatin structure. The nuclei of cells expressing the RFP 
histone 2b construct can be visualised with a suitably 
configured fluorescent microscope. The strength of the 
observed signal is dependent upon, amongst other factors, 
the level of expression of the inserted gene and the cell cycle 
state of the cell. 
 
4. 2 Image capture 
A dataset of 196 images was analysed. Each 16 bit image is 
512 x 672 pixels. The data was generated in an RNAi 
knock-down assay that was investigating the effect of the 
target proteins on cell survival. The data was captured using 
the BD Pathway HT Kinetic microscope using a 20x lens 
with a numerical aperture of 0.75. As segmentation 
processes are intended to be practically deployed 
demonstration with independently generated data is 
advantageous.    
 
4. 3 Image Analysis 

To ensure the fairness of the segmentation comparison, 
the same pre-analysis, a 3 x 3 median filter, and region size 
filter, 250 pixels minimum and 2500 pixels maximum, were 
applied in both automated segmentation trials. These 
parameters were chosen from prior experience. 
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A single image is a section of a larger container therefore 
it is typical to capture partial objects around the edges of the 
field of view. These regions present analytical challenges as 
their size and shape will be truncated in the image. To avoid 
such problems any regions that intersect the edge of the 
image were discounted by the automated analyses and 
ignored in the manual classification.  

The standard thresholding operation utilised for 
comparison was the Otsu method [5] which identifies a 
global threshold as the point that separates the image 
intensity histogram into the most compact subsets. This 
technique is a common function in commercial analysis 
applications for microscopy research. Application of the 
calculated threshold creates a binary image that defines the 
foreground and background. Contiguous regions of the 
foreground are taken as regions of interest, these regions 
were subsequently filtered as stated above.  

The region collection process rescaled the pixel 
intensities to the ranges 3, 4, 5, 6, 7, 8, 9 & 10. The convex 
hull of each region is calculated by applying an 
implementation of the Graham Scan algorithm [6] to the 
perimeter points. The identified and filtered regions are 
ordered according to their calculated deviation from their 
convex hulls. Regions with a mean deviation above 3 are 
disregarded. The final set of regions is accumulated by 
identifying the highest quality matches that do not overlap, 
any region that requires pixels taken by a higher quality 
match is discarded. The re-scale ranges and deviation limit 
were chosen from experience. 

 
4.4 Validation 
Relying on user defined boundaries to automatically test the 
accuracy of segmentation methods would require an expert 
user to perfectly segment several thousand discrete nuclei 
using a computer mouse. Such an operation would also 
require a validated method to effectively compare the 
manual and automatically segmented regions. This was 
deemed impractical to implement. 

Our approach to validation requires that the user define a 
single point for each nucleus, ideally around the centre. The 
user then iterates through the segmented regions and 
identifies which are acceptable and which are not. The 
image presented to the user is passed through the same 
filters as used for the automated segmentation. To 
practically display the images they were scaled from 16 bit 
to 8 bit and the intensities normalised to maximise the 
contrast. 

We implemented a software application to assist in the 
validation process. Our test software creates data files that 
describe a specific image file and the results of the 
segmentation operations that are readable by the validation 
application.  

The validation application presents the user with a 
selectable list of the data files. Upon selecting a data file the 
user is presented with the source image. Using the computer 

mouse the user selects a single point around the centre of 
each nucleus, this point is used to associate a validated 
segmented region with a user defined region in post analysis. 

Object validation is performed double blind. When a data 
file is selected all of the regions in the segmentations are 
pooled into a randomly arranged list that the user works 
through. For each region the user is shown single perimeter 
overlain upon the source image and must classify it as 
acceptable or unacceptable. The user is blind to the 
segmentation operation that defined the region. 

It is possible that automated segmentation will identify a 
valid region missed by the user. In this situation the user will 
classify the region as valid but it will not contain a user 
defined point. These regions can demonstrate increased 
sensitivity in the automated process although a significantly 
high number of such regions may suggest lax manual 
segmentation.  

The application includes display options for individual 
segmentations for testing and post analysis purposes. As 
these displays associate regions with segmentations they are 
reserved for use in post analysis.  

 
5. RESULTS 

Raw images and segmentation data are available upon 
request. For the 196 source images the user defined 4815 
nuclei.  
 
Table 1. Regions identified by automatic methods 

Validated  Method 
Matched Unmatched 

Invalid 

Otsu Threshold 1413  29  99 
Shape Analysis 4217  213 96 

 
Table 2. Percentages of validated unmatched regions 

Method  % For user 
defined total 

% For method 
total  

Otsu Threshold 0.602 6.42 

Shape Analysis 4.42 2.12 
 
Figure 1. Graph showing frequency of images with specific 
quantity of user defined nuclei 
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Figure 2. Graph showing average percentage validated 
regions for total quantity of user identified nuclei 
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6. DISCUSSION 
 

The analysis of 196 images yielded 4815 user identified 
objects to validate the automated segmentation methods. 
The results in Table 1 show that our shape analysis method 
correctly identified nearly three times as many user defined 
nuclei as the standard thresholding approach.  

Figure 1 shows that the distribution of user defined nuclei 
in the image data was approximately normal. Figures 2a and 
2b show that the average rate of valid matches for both 
automated processes is independent upon the number of user 
defined regions in the image. This demonstrates that the 
automated processes can be expected to perform consistently 
and did not gain disproportionate positive results from a 
small number of highly populated images.   

A two tailed t-test was used to evaluate the statistical 
significance of the difference in the fractions of recovered 
regions by the two methods. The t-test was conducted 
assuming unequal variances. Using a confidence value of 
0.05 the calculated t statistic is -47.1 which translates to a 
probability of 3.9x10-161 that there is no difference between 
the mean fraction recovery for the two methods, i.e. the two 
methods lead to very significantly different results, our 
method being the better one. 

Whilst any region identified by the user was regarded as 
ground truth it was still feasible that the user would miss 
valid regions that would be identified by the automated 
analyses. Table 2 shows that our technique was the more 
capable of the two at identifying valid regions missed by the 
manual assessment. The size and intensity measurements of 
these objects (data not show) show that the unmatched 
regions had a similar size distribution to the matched objects 
but the intensity distribution was concentrated at lower 
values. A low mean intensity will have low image contrast 
and could explain the user missing the regions.   

The invalid regions identified in both automated 
operations are false positive results. Both automated 
operations reported low false positives and our shape 
analysis method reported slightly less than the threshold 

operations. However, when expressed as a percentage of the 
total regions identified in Table 3 the thresholding technique 
is shown to have over three times rate of introducing a false 
positive result.  

The valid and invalid results from the shape analysis were 
further analysed to identify any significant difference that 
could be used to reduce false positives. Comparison of the 
pixel intensities, object size and the mean convex hull 
deviation measure showed that both groups have similar 
distributions for each (data not show). Setting more stringent 
filters would potentially reduce the false positive rate but 
would also increase the false negative rate. Visual inspection 
of the false positive regions indicates that they are caused by 
localised noise and un-focused objects therefore a practical 
solution is to improve the capture system. 

 
7. CONCLUSIONS 

 
We have demonstrated an improved method for identifying 
cell nuclei from microscopy images. Although the method 
performed better than the standard threshold approach and 
has a lower false positive rate it still had a false negative rate 
above 10% which we aim to improve upon.  

Visual inspection of the false negatives indicates that the 
objects show greater internal intensity variation. The raw 
data from the region identification analysis shows that these 
regions are never recorded as a single similar region using 
the scales in this analysis. Using larger scales could identify 
these regions but as at the cost of reducing specificity and 
increasing the possibility of false positive results.    

Alternatively, as the shape analysis operation is 
independent of the method used to derive potential regions it 
is possible to use different methods to identify additional 
candidate regions. 
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